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End-to-end simulators may be used to size
passive and active remote sensors for space-
borne, air-borne and ground-based
applications.

May be used to size DIAL systems.
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End-to-end simulators are capable to 
generate synthetic measurements by 
numerically simulating :

mechanisms of interaction of laser 
radiation with atmospheric constituents

behaviour of all devices in the 
experimental setup.

End-to-end models include:

Forward model generate synthetic lidar signals

Retrieval module application of the DIAL equation

End-to-end simulators of DIAL systems



• DIAL Technique is based on:
– Transmission of two laser pulses 

throughout the atmosphere.
– Comparison of the intensities of 

the backscattered radiation.

• The range-resolved profile of the concentration of the molecular species 
under investigation nsp is directly derived from the on- and off line lidar signals
through the equation:
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Measured parameters:
• Atmospheric constituents

H2O (for example: online 723.59 nm, offline 723.7 nm; online 935.31 nm, offline 935.6 nm)
CO2 (for example around 2.0 mm)
CH4  (for example: online 310 nm, offline at 355 nm)
O3 (for example: online at 310 nm, offline at 355 nm)
NO2          (for example around 450 nm)
SO2           (for example around 300 nm and 7.4 mm)

• Atmospheric state variables

Temperature
Pressure

Atmospheric temperature measurement based on the selection of specific O2 absorption 
lines characterized by a large temperature dependence. 
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Radiative transfer of 
daylight to detector

End-to-end model

Univ. Basilicata
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DLR

Block diagram

Laser wawelengths: λoff=935.6 nm
λwk=935.66 nm
λmed=935.31 nm
λst=935.43 nm

Pulse energy = 75 mJ
Pulse rep. rate= 25 Hz
Telescope diameter=1.7 m
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4ν%
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WALES = Water Vapour Lidar Experiment in Space 
ESA Earth Explorer Core Mission



Mission performance
Clear sky performances from end-to-end simulation

Solar off-nadir angle = 750

Ground albedo = 0.35
Orbit altitude = 450 km

∆z=1.0 km, 0.5 < z < 2 km,
∆z=1.0 km, 2 < z < 5 km, 
∆z=1.0 km, 5 < z < 10 km, 
∆z=1.5 km, 10 < z < 16 km

∆x=25 km, 0.5 < z < 2 km, 
∆x=100 km, 2 < z < 5 km, 
∆x=150 km, 5 < z < 10 km, 
∆x=200 km, 10 < z < 16 km

Random Error
US Standard Atmosphere:
Peak random error < 15 % up to 14 km
Mean random error = 6.6 % up to 14 km
Tropical atmosphere:
Peak random error < 11 % up to 14 km
Mean random error = 5.4 % up to 14 km
Sub-Artic winter atmosphere:
random error < 18 % up to 12 km
Mean random error = 8.8 % up to 14 km
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Mission performance
Clear sky performances from end-to-end simulation

BIAS

Peak BIAS < 4 % throughout the troposphere

Mean and standard deviation 
of the BIAS up to 13 km:

• -0.7±0.6 % for US Standard Atmosphere
• -2.4±1.0 % for Tropical atmosphere
• -1.3±1.4 % for Sub-Artic winter

Contribution from water vapour 
spectroscopy as well as the effects 
associated with temperature uncertainty are 
not included.
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Mission performance

WALES is able to perform measurements above and below thin cirrus clouds, down to 
the top of mid-level clouds: 
peak BIAS < 5-6 %, rand. error < 20-30 %

cirrus @ 9 km, τ =0.3

mid-level cloud @ 3 km, τ=0.3

US Standard 
Atmosphere

Performances in presence of clouds: 
effect of clouds on random error and BIAS
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Water Vapour 
Mixing Ratio,

g/kg

Mission performance: 
Performances of WALES in variable atmospheric conditions
WALES 2-D simulation from observed airborne DIAL data

WALES end-to-end simulation at 25 km horizontal resolution
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Atmospheric field : DLR Falcon water vapour DIAL system and MM5 model
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Mission performance
2D simulation of bias and random error from end-to-end model
Atmospheric field : DLR airborne DIAL and MM5
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Particle backscatter: 2D simulation
Original DLR Falcon particle backscatter field
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3.1 %Overall BIAS 

0.9 %0.4 %Application of non-
linear operators

0.3 % clear air, 
0.4 % in clouds

0.4 % clear air, 
0.5 % in clouds

Corrected through an iterative 
approach, assuming an error of 
30 % on lidar ratio

Rayleigh-Doppler 
broadening effect

0.4 %1.1 %considering 2 K temperature 
uncertainty

Temperature 
knowledge

2 %2 %considering 2 % uncertainty on 
vapour vapour spectroscopy

H2O Spectroscopy 
knowledge

1.0 %1.0 %considering 
99.9 % laser spectral purity

Spectral purity

0.9 %1.2 %considering 
160 MHz laser linewidth

Line-width

1.1 %1.2 %considering 
60 MHz laser detuning

Frequency stability

Standard deviation 
of the BIAS up to 14 

km

Mean BIAS up 
to 14 km

CommentContributors
Systematic error budget
Mission performance



Pure Rotational Raman lidar measurements of 
atmospheric temperature from space
Analytical model simulations

Simulation using the residual laser power at 
355 nm being left by the Nd:YAG laser 
source used in the WALES experiment.
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Ptrasm=30 W @ 355 nm
Atel=2.4 m2

FOV=105 µrad
Clear-sky performances:

Altitude range = 0-16 km
Horizontal Integration = 200 km
Vertical Resolution = 1 km
Precision throughout the troposphere

< 1 K (max precision 0.6 K) night
< 2 K (max precision 1.2 K) day

fulfilling WMO threshold observational requirements for 
most NWP and climate research applications 
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Lidar measurements of relative humidity from space

8 %<∆RH/RH<45 %, 8<z< 16 km

max.precision in the PBL

mean random error = 11.3 % up to 10 km
mean random error = 16.6 % up to 16 km

Coarse characterization of cloud development 
processes, not accurate enough for cloud 
microphysical studies (particle nucleation, 
etc.).
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End-to-end simulators may be used to size DIAL systems for space-borne, air-borne and 
ground-based applications.

An end-to-end model was successfully applied to simulate the performances of WALES 

End-to-end simulations show that a space-borne DIAL systems with the specifications of 
WALES may:

• provide low bias (< 5 %) high precision measurements (random error<20 %) of  the 
water vapour distribution throughout the troposphere with high vertical resolution, in 
clear sky conditions and in presence of clouds.

• provide accurate estimates of additional geophysical parameters as particle backscatter.

Summary
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Analytical simulations of Rotational Raman lidar measurements of atmospheric 
temperature using the residual laser energy at 355 nm being left by the WALES 
transmitter show night-time precision throughout the troposphere better than 1 K and 
daytime precision better than 2 K. 



Future work
• Inclusion in the simulator of additional atmospheric data sets coming from existing lidar

systems to:
get a more complete and exhaustive assessment of  the performances of WALES in 
variable atmospheric conditions and the effects associated with atmospheric 
inhomogeneities and variable cloud scenes.

• Modify the simulator to use it for sizing ground-based DIAL systems and to verify the 
feasibility of other space applications (CO2, temperature) 

• Development of an Observing System Simulation Experiment (OSSE)

To assess the impact of a WALES like system on NMP and Climate studies, 
To test the benefit in term of NWP and climate research of assimilating data from a 
space-borne water vapour DIAL system into GCMs and smaller scale models.

Earth Observation Envelope Programme – 3

expected End 2004
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